Catalog
  1. 1. Python #Plot
    1. 1.1. Purpose
    2. 1.2. Theory
    3. 1.3. The Results
    4. 1.4. The code
Python Plot (1) A small ball on a smooth semicircle (Animated)

Python #Plot

All the python study code can be found in my own repository.

Purpose

In high school we learned how to use the energy conservation law to get the velocity for a ball slides down a 1/4 circle. However, the time needed in this process is still unknown. The period for a pendulum also uses a approximated expression. In this note, I will try to solve the time evolution for a ball slide down from a smooth semi-circle numerically via python. I will compare the oscillator approximation and accurate result in the same animated figure .

Theory

According to the energy conservation law

We need a linear differential form and the velocity $v$ should be used. The relation between the angle $\theta$ and the time is

We only consider the simple case that the small ball is initially rest, that is

The x and y coordinate can be expressed as

If $\theta$ is near 0,then $\sin(\theta)\approx \theta$,

This is the equation for a simple harmonic oscillator, when $\theta$ is small enough, this equation works well.

The Results

I used the function “odeint” to solve the differential equations numerically. I give two examples with the angle $\theta$ is very big or relatively small.

  • With the ball initially in the $\theta=\pi/6$, the evolution of oscillator approximations and accurate cases are different but not so big.

  • With the ball initially in the $\theta=\pi/2$, the oscillator approximation is not a good approximation now.

The code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
# To plot a animated oscillator
# Use to spot, one spot is fixed at the origin and the
# other is moving

# import necessary library
import numpy as np
from matplotlib import pyplot as plt
from matplotlib import animation
from scipy.integrate import odeint

# Define the parameters
theta_0 = -np.pi/6
theta_0_degree = theta_0/np.pi*180
R = 1.0
g = 9.8
coe = 1

# Define the differential equations


def evo_accu(z, t, g, R, coe):
v = z[0]
theta = z[1]
dtheta = v/R
dv = -coe*g*np.sin(theta)
dzdt = [dv, dtheta]
return dzdt


def evo_osci(z, t, g, R, coe):
v = z[0]
theta = z[1]
dtheta = v/R
dv = -coe*g*theta
dzdt = [dv, dtheta]
return dzdt


t_max = 1.0/R*g*3
numt = 500
tmat = np.linspace(0, t_max, numt)
z0 = [0, theta_0]
theta_accu = odeint(evo_accu, z0, tmat, args=(g, R, coe))
theta_osci = odeint(evo_osci, z0, tmat, args=(g, R, coe))
# The coordinate expression
x_accu = R*np.sin(theta_accu[:, 1])
y_accu = -R*np.cos(theta_accu[:, 1])

x_osci = R*np.sin(theta_osci[:, 1])
y_osci = -R*np.cos(theta_osci[:, 1])

theta_accu_degree = theta_accu[:, 1]/np.pi*180
theta_osci_degree = theta_osci[:, 1]/np.pi*180
# Set the curve of the half circle
x_cir = np.linspace(-R, R, 100)
y_cir = -np.sqrt(R**2-x_cir**2)
# Count the loop
count_accu = np.zeros(numt)
count_osci = np.zeros(numt)

counter_accu = 0
counter_osci = 0
for i in range(numt-1):
if(theta_accu[i, 1]*theta_accu[i+1, 1] < 0):
counter_accu = counter_accu+1
count_accu[i] = counter_accu
else:
count_accu[i] = counter_accu

if(theta_osci[i, 1]*theta_osci[i+1, 1] < 0):
counter_osci = counter_osci+1
count_osci[i] = counter_osci
else:
count_osci[i] = counter_osci

# plot the two different evolution in the same figure
# First set up the figure, the axis, and the plot element we want to animate

fig = plt.figure()
ax = plt.axes(xlim=(-2, 2), ylim=(-2, 2), aspect='equal')
line_accu, = ax.plot([], [], 'r-o', label='Accurate')
line_osci, = ax.plot([], [], 'g-o', label='Oscillator Approx')
theta_accu_text = ax.text(0.02, 0.8, '', transform=ax.transAxes)
theta_osci_text = ax.text(0.02, 0.7, '', transform=ax.transAxes)
loop_accu_text = ax.text(0.02, 0.6, '', transform=ax.transAxes)
loop_osci_text = ax.text(0.02, 0.5, '', transform=ax.transAxes)
line_cir, = ax.plot(x_cir, y_cir, '--', label='Circle Half')
# initialization function: plot the background of each frame


def init():
line_accu.set_data([], [])
line_osci.set_data([], [])
theta_accu_text.set_text('')
theta_osci_text.set_text('')
loop_accu_text.set_text('')
loop_osci_text.set_text('')
return line_accu, line_osci, theta_accu_text, theta_osci_text, loop_accu_text, loop_osci_text,

# animation function. This is called sequentially

def animate(i):
x_accu_mat = [0, x_accu[i]]
y_accu_mat = [0, y_accu[i]]
x_osci_mat = [0, x_osci[i]]
y_osci_mat = [0, y_osci[i]]
line_accu.set_data(x_accu_mat, y_accu_mat)
line_osci.set_data(x_osci_mat, y_osci_mat)
theta_accu_text.set_text(
'$ \Theta_{accu} $ = %.2f $^o $' % theta_accu_degree[i])
theta_osci_text.set_text(
'$ \Theta_{osci} $ = %.2f $^o $' % theta_osci_degree[i])
loop_accu_text.set_text('loop accu=%.1d' % count_accu[i])
loop_osci_text.set_text('loop osci=%.1d' % count_osci[i])
return line_accu, line_osci, theta_accu_text, theta_osci_text, loop_accu_text, loop_osci_text,


# call the animator. blit=True means only re-draw the parts that have changed.
anim = animation.FuncAnimation(fig, animate, init_func=init,
frames=numt, interval=10, blit=False)
plt.legend(loc='best')
plt.xlabel('X Direction (m)')
plt.ylabel('Y Direction (m)')
ax.text(0.02, 0.02, 'g = %.2f m/s' % g, transform=ax.transAxes)
ax.text(0.32, 0.02, 'R = %.1f m' % R, transform=ax.transAxes)
ax.text(0.62, 0.02, '$\Theta_{0}$ = %.1d$^o $' %
theta_0_degree, transform=ax.transAxes)
# plt.show()
anim.save("Ball_1.gif", writer='pillow')
Author: Knifelee
Link: https://knifelees3.github.io/2019/07/23/A_En_Python_PlotStudy1_SemiCircle_OscilatorApprox/
Copyright Notice: All articles in this blog are licensed under CC BY-NC-SA 4.0 unless stating additionally.
Donate
  • 微信
  • 支付寶

Comment